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1 Instituto de F́ısica Teórica, Universidade Estadual Paulista, Rua Pamplona, 145 01405-900 – São Paulo, S.P. Brazil
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Abstract. We evaluate the one-loop fermion self-energy for the gauged Thirring model in (2+1) dimensions,
with one massive fermion flavor. We do this in the framework of the causal perturbation theory. In contrast
to QED3, the corresponding two-point function turns out to be infrared finite on the mass shell. Then, by
means of a Ward identity, we derive the on-shell vertex correction and discuss the role played by causality
for non-renormalizable theories.

Recently, there has been interest in theories involving
four-fermion interactions for studying dynamical fermion
mass generation; such a mechanism may lead to a better
understanding of the large top quark mass. In this context,
d-dimensional (2 ≤ d < 4) Thirring-like interactions have
been considered in the large-N limit [1–5].

The original Thirring model [6], a soluble model for
the four-fermion interaction in (1+1) dimensions, does not
have any local gauge invariance. Even so, in [1] Gomes et
al. have advocated a restricted gauge symmetry making
use of a gauge fixing term in the Lagrangian, after lineariz-
ing it by introducing an auxiliary vector field (see also [2]).
Later, Itoh et al. [3] have reformulated the d-dimensional
Thirring model as a gauge theory by introducing the hid-
den local symmetry (Kondo [4] has obtained the same
results by using the Stückelberg formalism). This gauged
version of the Thirring model has also been used to study
fermion dynamical mass generation [3–5].

In (2+1) dimensions this gauged Thirring model has a
richer structure and a Chern–Simons term can be radia-
tively induced for an odd number of fermion flavors. This
parity-breaking term finds its place in many theories, from
condensed matter physics to pure mathematics. In partic-
ular, this term may be relevant to the fractional quantum
Hall effect in the context of QED3.

The gauged Thirring model in (2+1) dimensions is a
non-renormalizable theory, in spite of some formal resem-
blance with QED3. In this sense, it is not the appropriate
framework to study the Hall effect. However, many ques-
tions related to the Chern–Simons term can be treated in
this model. In particular, we can address the regulariza-
tion ambiguity related to the topological mass [7]. So, in a
previous paper [8] we have considered the (2+1)-dimensio-
nal gauged Thirring model, with one massive fermion,
in the framework of Epstein and Glaser’s causal theory

[9,10], and we studied the generation of dynamics for the
gauge boson. The causal theory revealed itself to be partic-
ularly appropriate to unambiguously obtain the coefficient
of the induced Chern–Simons term.

Even more interesting is the fact that using the Ep-
stein and Glaser method we never run into difficulties due
to ultraviolet divergencies, so that we do not have to in-
troduce an ultraviolet cut-off. Thus, besides offering us an
unambiguous determination of the topological mass, the
application of the Epstein and Glaser causal method to
the gauged Thirring model in (2+1) dimensions affords
an alternative approach to non-renormalizable models.

Having this in mind, we consider the (2+1)-dimensional
gauged Thirring model, with one massive fermion flavor,
and evaluate the fermion self-energy in the framework of
causal perturbation theory, calling attention to the differ-
ences with respect to the usual approaches. The fermion
self-energy graph is important in the usual treatments of
four-fermion interactions (such as the Nambu and Jona–
Lasinio model [11]) in obtaining the gap equation. Here,
we will see that the non-renormalizability of the model will
appear in a number of finite but undetermined constants.

In the sequence, we take advantage of the gauge invari-
ance of the model to obtain the on-shell vertex correction
by means of a Ward identity and verify the existence of
the adiabatic limit [10], since in a general gauge we do not
have infrared divergencies.

We first set our notation and review some useful re-
sults. The original Lagrangian for the massive Thirring
model [6], considered in (2+1) dimensions, is

L = ψiγ
µ∂µψ −mψψ − G

2
(ψγµψ)(ψγµψ). (1)
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We use the two-dimensional realization of the Dirac alge-
bra:

γ0 = σ3, γ1 = iσ1, γ2 = iσ2,

γµγν = gµν − iεµνδγδ, gµν = diag(1,−1,−1). (2)

where the σj ’s are the Pauli matrices. The theory de-
scribed by the above Lagrangian does not have local gauge
symmetry. However, after linearizing the interaction by
introducing an auxiliary vector field, one can make use
of the Stückelberg formalism to obtain a gauge invariant
version of this model. So, considering the complete BRST
invariant Lagrangian in Rξ gauge, we have [3,4]

LTh,G = LA,ψ + Lθ + Lgh, (3)

with

LA,ψ = ψiγ
µ(∂µ − ieAµ)ψ −mψψ

+
M2

2
AµA

µ − 1
2ξ

(∂µA mu)2, (4)

Lθ =
1
2
(∂µθ)2 − ξM2

2
θ2, (5)

Lgh = i
[
(∂µc)(∂µc) − ξM2cc

]
, (6)

where we have introduced G = e2/M2, with e a dimen-
sionless parameter. In these equations Aµ stands for the
gauge boson field; ψ, ψ are the fermion fields and θ is the
Stückelberg neutral scalar field. Here, c and c stand for
the Faddeev–Popov ghost fields.

It is worth to note that the above Lagrangian was used
both with a non-local and local gauge parameter in [3]
and [4], respectively. In [3] the authors have considered a
non-local form of the Rξ gauge with the purpose of ana-
lyzing the fermion dynamical mass generation in the lad-
der approximation for the Schwinger–Dyson equation. The
non-local gauge is the only one which allows for this ap-
proximation in a consistent way with the Ward–Takahashi
identity for the current conservation.

However, such non-local gauges are difficult to han-
dle and the corresponding perturbative expansion exhibits
technical problems (see [12]). So, in order to avoid these
problems, we follow here the approach of [4] and consider
a local gauge parameter ξ. Then, it must be observed that
if we take the unitary gauge (which here corresponds to
making ξ → ∞), the Lagrangian (4) reduces to the origi-
nal Thirring model of (1). That is, the Thirring model is
just a gauge fixed version of (4), as pointed out in [13].

In the limit ξ → ∞, the perturbation parameter, which
in the gauged model is e, is again G. But, as a consequence
of the linearization, we see that graphs of the same order
in G are obtained as the limit of graphs of different orders
in perturbation theory in e. For example, both the vertex
correction and the box diagram (which are of order e3 and
e4, respectively) are of order G2 when we take the limit
ξ → ∞.

In [8] we have proven that the singular order of an
arbitrary graph in the gauged Thirring model is

ω = 3 − f − 3
2
b+

1
2
n, (7)

where f (b) is the number of external fermions (bosons)
and n is the order of perturbation theory. From this ex-
pression we see that the Thirring model is non-renormali-
zable and we expect the number of constants appearing in
the general solution of the splitting problem [9,10], which
are not fixed by causality, to increase with the order of
perturbation theory. In addition, (7) gives ωse = 2 for the
singular order of the fermion self-energy and ωv = 1 for
the vertex correction.

Let us start by considering the fermion self-energy.
Here we note that the tadpole contribution vanishes by
charge conjugation. So, from (4) we see that the first or-
der term in the causal perturbation theory can be written
down as

T1(x) = −ie : ψ(x)γµψ(x) : Aµ, (8)

where the dots mean normal ordering of the fields in the
fermion current. From this we can construct the distribu-
tion D2(x1, x2) = R

′
2 −A′

2 in second order of perturbation
theory. So, after using Wick’s theorem, the contribution
for the fermion self-energy in D2 is

D2(x1, x2) =: ψ(x1)d(y)ψ(x2) :, (9)

where y ≡ x1 − x2, and the numerical distribution

d(y) = −e2γµ

×
[
S(−)(y)D(+)

µν (−y) + S(+)(y)D(+)
µν (y)

]
γν (10)

has causal support. The fermion commutation functions
in (10) are given by [10]

S(±)(x) = ± i
(2π)2

∫
d3p(p/+m)Θ(±p0)δ(p2 −m2)e−ip·x,

(11)
and the boson commutation functions are [8]

D(±)
µν (x) = ± i

(2π)2

∫
d3k

kµkν
M2 δ(k

2 − ξM2)Θ(±k0)e−ik·x.

(12)
Now, we must perform the splitting of the causal distri-
bution d(y) into the advanced and retarded distributions
a and r, respectively. Since the splitting procedure is best
done in momentum space, we go to the p space and write

d̂(p) = Ad(p2)p/+Bd(p2), (13)

where d̂(p) stands for the distributional Fourier transform
of d(y). In this expression we have

Ad(p2) =
1

(2π)3/2
e2

8
√
p2M2

sgn(p0)Θ
[
p2 − a2]

×
[
(p2 +m2)

(
1 +

m2 − ξM2

p2

)
− 4m2

]
, (14)

Bd(p2) =
1

(2π)3/2
e2mξ

4
√
p2

sgn(p0)Θ
[
p2 − a2], (15)

with a2 ≡ (m + (ξ)1/2M)2. From these equations we can
see that d̂(p) goes to infinity with O(p2) when p2 → ∞,
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that is, d̂(p) has singular order ωse = 2, according to
(7). Since ω ≥ 0, the retarded distribution is obtained
by means of the “dispersion” formula [10]

r̂(p) =
i

2π

∫ +∞

−∞
dt

d̂(tp)
(t− i0)ω+1(1 − t+ i0)

, (16)

which is called the central splitting (CS) solution. Then,
applying this formula to (13), it follows that the retarded
distribution associated with the fermion self-energy has
the following structure:

r̂(p) = Ã(p2)p/+ B̃(p2), (17)

where

Ã(p2) =
i

(2π)5/2
e2

8
√
p2M2

×
[(

(p2 +m2)
(

1 +
m2 − ξM2

p2

)
− 4m2

)

×

ln

∣∣∣∣∣∣
1 −

√
p2

a2

1 +
√

p2

a2

∣∣∣∣∣∣− iπsgn(p0)Θ
[
p2 − a2]




− 2(2m2 + ξM2)

√
p2

a2

+
2m2

p2 (m2 − ξM2)

(√
p2

a2 +
1
3

(
p2

a2

)3/2
)]
,(18)

and

B̃(p2)=
i

(2π)5/2
e2mξ

4
√
p2


ln

∣∣∣∣∣∣
1−
√

p2

a2

1+
√

p2

a2

∣∣∣∣∣∣
− iπsgn(p0)Θ

[
p2−a2]+2

√
p2

a2 +
2
3

(
p2

a2

)3
2
]
. (19)

However, for ω > 0 the solution of the splitting problem is
not unique. If r̃(x) is the retarded part of another decom-
position, then r̃(x) − r(x) is a distribution with support
in {0}. This implies that, taking into account the mini-
mal distribution splitting condition, the general solution
for the splitting problem of a distribution with ω = 2, in
momentum space, is given by [9,10]

r̃(p) = r̂(p) + C0 + C1p/+ C2p
2, (20)

where the Ci’s are constants not fixed by causality. Now,
we are able to obtain the fermion self-energy, which is
defined as

Σ̂(p) = −i(2π)3/2 (r̃(p) − r̂′(p)) , (21)

where r̂′(p) is the Fourier transform of R′(x1, x2) = −e2γµ
× S(−)(y)D(+)

µν (−y)γν , the first term in (10). So now we
can write

Σ̂(p) = A(p2)p/+B(p2) + C0 + C1p/+ C2p
2, (22)

where we have redefined the constants to include the
−i(2π)3/2 factor. The expressions for A(p2) and B(p2) are
obtained by replacing sgn(p0) by 1 in Ã(p2) and B̃(p2),
respectively.

In contrast to the vacuum polarization tensor [8], the
Lorentz structure cannot be invoked to fix the Ci’s, since
the splitting procedure increases the singular order of Bd
to that of Ad, for which ω = ωse. Here, we can impose that
the pole of the corrected fermion propagator, S−1

F (p) =
(2π)3/2[p/ − m − (2π)−3/2Σ̂(p)], be in m. This condition,
which is equivalent to Σ̂(p)|p/=m = 0, can be satisfied
choosing C0 as

C0 =
ie2m2

(2π)5/26M2

×
(

1 +
m

√
ξM

a2

)√
m2

a2 −mC1 −m2C2, (23)

so that there remain two undetermined constants. For
the moment we postpone the discussion of the remaining
constants and evaluate the vertex function. But, instead
of building the vertex function by considering the corre-
sponding causal distribution in third order perturbation
theory and performing its splitting in retarded and ad-
vanced distributions, we can make use of the fact that the
Lagrangian (3) is BRST invariant, to derive a Ward iden-
tity which will help us to obtain the on-shell three-point
function, or current operator, in the limit of equal initial
and final fermion momenta.

The BRST variation for an arbitrary operator O can
be defined as δO = (δO/δη)δη ≡ (δBO)δη, where δη is a
Grassmann variable anticommuting with the ghost fields,
c and c. Thus, we see that Lagrangian (3) is invariant
under the set of BRST transformations

δBψ(x) = iec(x)ψ(x), (24)
δBθ(x) = Mc(x), (25)

δBAµ(x) = ∂µc(x), (26)

δBc(x) = − i
ξ
F [A, θ], (27)

δBc(x) = 0, (28)

where in the Rξ gauge F [A, θ] = ∂µA
µ + ξMθ. We are

interested in considering variations of Green’s functions
of form 〈0|T{O(y)c(x)}|0〉, where O(y) is a shorthand no-
tation for an arbitrary product of the fields Aµ, ψ and
ψ. Taking into account the invariance of the Green’s func-
tions under the BRST transformation and considering Aµ,
ψ and ψ as independent fields, we get

∂xµ〈0|T{O(y)Aµ(x)}|0〉
= iξ〈0|T{(δBO(y)) c(x)}|0〉, (29)

where we have made use of (27) and the explicit form
of F [A, θ]. Choosing O = Aν(y) we obtain the following
Ward identity:

∂xµDµν
F (x− y) = iξ∂νy∆

F
gh(y − x), (30)
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where Dµν
F and ∆F

gh are the full Feynman propagators for
the gauge boson and the ghost fields, respectively. Since
the ghost fields are not interacting, ∆F

gh turns out to be
the free propagator. Then, taking into account the explicit
form of ∆F

gh, we can write (30) in momentum space as

kµDµν
F (k) = −ξ kν

k2 − ξM2 . (31)

Following the same steps, for O = ψ(y)ψ(z) we obtain

∂xµV
µ(x, y, z) = eξSF(y − z)

× [
∆F

gh(y − x) −∆F
gh(z − x)

]
, (32)

where SF is the full fermion propagator and V µ(x, y, z) ≡
〈0|T{Aµ(x)ψ(y)ψ(z)}|0〉 is the vertex Green’s function.
Introducing the amputated Green’s function Γµ(p′, p) =
γµ+Λµ(p′, p), which in momentum space is related to V µ
by

V µ(k, p′, p) = eDµν(k)SF(p′)Γν(p′, p)SF(p), (33)

and making use of (31), the Ward identity (32) becomes

Λµ(p, p) = − 1
(2π)3/2

∂

∂pµ
Σ̂(p), (34)

where Λµ(p′, p) is the Fourier transform of the three-point
function corresponding to the vertex correction. Thus,
making use of (34) and (21), we obtain for Λµ(p, p) on
the mass shell

Λµ(p, p)|p2=m2 = − C1

(2π)3/2
γµ − 2C2

(2π)3/2
pµ

− e2

4(2π)5/2mM2


γµ


−ξM2 ln

∣∣∣∣∣∣
1 −

√
m2

a2

1 +
√

m2

a2

∣∣∣∣∣∣
− (2m2 + ξM2)

√
m2

a2

+ (m2 − ξM2)
(

1 +
m2

3a2

)√
m2

a2

)

+ pµ


ξM2

m
ln

∣∣∣∣∣∣
1 −

√
m2

a2

1 +
√

m2

a2

∣∣∣∣∣∣
+

4m2ξM2

3a3 − 2(m2 − ξM2)
a

)]
, (35)

When obtaining (35) through the Ward identity (34), the
fact is crucial that, in a general gauge ξ 6= 0, the self-
energy distribution is not plagued by infrared divergen-
cies when we go on the mass shell. As a consequence, the
vertex correction does not suffer from the infrared illness,
which guarantees the existence of the adiabatic limit in
the corresponding S-matrix element (we can also show
that the vacuum is stable in this model [16]).

This contrasts with QED3 where, due to the mass-
less photon, the self-energy has a logarithmic singularity
on the mass shell [14], preventing the use of the Ward
identity to obtain the on-shell vertex correction. There,
one can attribute the infrared divergencies to an incor-
rect choice of the asymptotic states and the ill definition
of the scattering operator in the asymptotic region due to
the cut-off from the long-range part of the interaction (see
[15] and references therein).

At this point we resume the question of the undeter-
mined constants present in the solution for the self-energy
and vertex correction distributions. We can impose a nor-
malization condition preserving the CS solution in p = 0
for the vertex correction, that is, Λµ(0, 0) = 0, before go-
ing to the mass shell. With this condition we fix C1 = 0,
but C2 still remains undetermined. This ammounts to fix-
ing the electric form factor, leaving the fermion anomalous
magnetic moment arbitrary. Here, it is important to note
that the impossibility of determining all constants, by us-
ing physical considerations other than causality, is related
to the non-renormalizability of the model. So, the remain-
ing constant C2 must be regarded as a free parameter of
the model.

We can also take the limit ξ → ∞, in order to make the
connection with the original Thirring model. This limit
must be performed with M finite, that is, we take m2 �
ξM2 and p2 � ξM2. Then, we have

Σ̂(p)|ξ→∞ −→ C2(p2 −m2), (36)

Λµ(p, p)|ξ→∞ −→ − 2C2

(2π)3/2
pµ. (37)

Noting that the fermion self-energy graph in the gauged
Thirring model shrinks to the tadpole diagram in the orig-
inal model while the vertex correction corresponds to the
“fish” diagram with incoming momentum q = 0, we see
that in the usual treatments this limit would give diver-
gent constants. Then, since in the causal approach we
never run into divergencies, it is reasonable to expect that
the result of this limit depends only on the undetermined
constants.

Summing up, we have calculated the second order cor-
rection to the current operator from the fermion self-energy
in the gauged Thirring model in (2 + 1) dimensions and
showed that it is infrared safe, in contrast to QED3. How-
ever, we can also show that the vacuum is stable both in
the gauged Thirring model and in QED3, so that we still
can define free particle states [16].
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